天天干天天操天天爱-天天干天天操天天操-天天干天天操天天插-天天干天天操天天干-天天干天天操天天摸

 

 

 

 
  IC培訓
   
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 
   班級規(guī)模及環(huán)境--熱線:4008699035 手機:15921673576/13918613812( 微信同號)
       堅持小班授課,為保證培訓效果,增加互動環(huán)節(jié),每期人數(shù)限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領(lǐng)館區(qū)1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協(xié)同大廈
近開課時間(周末班/連續(xù)班/晚班):2025年6月9日....--即將開課--........................(歡迎您垂詢,視教育質(zhì)量為生命!)
   實驗設備
     ☆資深工程師授課
        
        ☆注重質(zhì)量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質(zhì)量保障

        1、培訓過程中,如有部分內(nèi)容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、課程完成后,授課老師留給學員手機和Email,保障培訓效果,免費提供半年的技術(shù)支持。
        3、培訓合格學員可享受免費推薦就業(yè)機會。

課程大綱
 

Day 01
=====
Overview of Big Data Business Intelligence for Criminal Intelligence Analysis

Case Studies from Law Enforcement - Predictive Policing
Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
Emerging technology solutions such as gunshot sensors, surveillance video and social media
Using Big Data technology to mitigate information overload
Interfacing Big Data with Legacy data
Basic understanding of enabling technologies in predictive analytics
Data Integration & Dashboard visualization
Fraud management
Business Rules and Fraud detection
Threat detection and profiling
Cost benefit analysis for Big Data implementation
Introduction to Big Data

Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
MPP (Massively Parallel Processing) architecture
Data Warehouses – static schema, slowly evolving dataset
MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Apache Spark for stream processing
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issues in Big Data

RDBMS – static structure/schema, does not promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Hadoop

When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS

MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
=====
Day 02
=====
Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?

Hadoop vs. Other NoSQL solutions
For interactive, random access to data
Hbase (column oriented database) on top of Hadoop
Random access to data but restrictions imposed (max 1 PB)
Not good for ad-hoc analytics, good for logging, counting, time-series
Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
Flume – Stream data (e.g. log data) into HDFS
Big Data Management System

Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence

Introduction to Machine Learning
Learning classification techniques
Bayesian Prediction -- preparing a training file
Support Vector Machine
KNN p-Tree Algebra & vertical mining
Neural Networks
Big Data large variable problem -- Random forest (RF)
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
Text analytic tool-Treeminer
Agile learning
Agent based learning
Distributed learning
Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis

Technology and the investigative process
Insight analytic
Visualization analytics
Structured predictive analytics
Unstructured predictive analytics
Threat/fraudstar/vendor profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery – failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytics
Network analytics
Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
Technology assisted review
Fraud analytics
Real Time Analytic
=====
Day 03
=====
Real Time and Scalable Analytics Over Hadoop

Why common analytic algorithms fail in Hadoop/HDFS
Apache Hama- for Bulk Synchronous distributed computing
Apache SPARK- for cluster computing and real time analytic
CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
Tools for eDiscovery and Forensics

eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
Predictive coding and Technology Assisted Review (TAR)
Live demo of vMiner for understanding how TAR enables faster discovery
Faster indexing through HDFS – Velocity of data
NLP (Natural Language processing) – open source products and techniques
eDiscovery in foreign languages -- technology for foreign language processing
Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification

Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
Network infrastructure / Large datapipe / Response ETL for real time analytic
Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
Gathering disparate data for Criminal Intelligence Analysis

Using IoT (Internet of Things) as sensors for capturing data
Using Satellite Imagery for Domestic Surveillance
Using surveillance and image data for criminal identification
Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
Combining automated data retrieval with data obtained from informants, interrogation, and research
Forecasting criminal activity
=====
Day 04
=====
Fraud prevention BI from Big Data in Fraud Analytics

Basic classification of Fraud Analytics -- rules-based vs predictive analytics
Supervised vs unsupervised Machine learning for Fraud pattern detection
Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
Social Media Analytics -- Intelligence gathering and analysis

How Social Media is used by criminals to organize, recruit and plan
Big Data ETL API for extracting social media data
Text, image, meta data and video
Sentiment analysis from social media feed
Contextual and non-contextual filtering of social media feed
Social Media Dashboard to integrate diverse social media
Automated profiling of social media profile
Live demo of each analytic will be given through Treeminer Tool
Big Data Analytics in image processing and video feeds

Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
LTFS (Linear Tape File System) and LTO (Linear Tape Open)
GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
Fundamentals of image analytics
Object recognition
Image segmentation
Motion tracking
3-D image reconstruction
Biometrics, DNA and Next Generation Identification Programs

Beyond fingerprinting and facial recognition
Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
Big Data Dashboard for quick accessibility of diverse data and display :

Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based services in Govt.
Tracking system and management
=====
Day 05
=====
How to justify Big Data BI implementation within an organization:

Defining the ROI (Return on Investment) for implementing Big Data
Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
Revenue gain from lower database licensing cost
Revenue gain from location based services
Cost savings from fraud prevention
An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
Step by Step procedure for replacing a legacy data system with a Big Data System

Big Data Migration Roadmap
What critical information is needed before architecting a Big Data system?
What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
How to estimate data growth
Case studies
Review of Big Data Vendors and review of their products.

Accenture
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
Treeminer
VMware (Part of EMC)
Q/A session

曙海教育實驗設備
android開發(fā)板
linux_android開發(fā)板
fpga圖像處理
曙海培訓實驗設備
fpga培訓班
 
本課程部分實驗室實景
曙海實驗室
實驗室
曙海培訓優(yōu)勢
 
  合作伙伴與授權(quán)機構(gòu)



Altera全球合作培訓機構(gòu)



諾基亞Symbian公司授權(quán)培訓中心


Atmel公司全球戰(zhàn)略合作伙伴


微軟全球嵌入式培訓合作伙伴


英國ARM公司授權(quán)培訓中心


ARM工具關(guān)鍵合作單位
  我們培訓過的企業(yè)客戶評價:
    曙海的andriod 系統(tǒng)與應用培訓完全符合了我公司的要求,達到了我公司培訓的目的。 特別值得一提的是授課講師針對我們公司的開發(fā)的項目專門提供了一些很好程序的源代碼, 基本滿足了我們的項目要求。
——上海貝爾,李工
    曙海培訓DSP2000的老師,上課思路清晰,口齒清楚,由淺入深,重點突出,培訓效果是不錯的,
達到了我們想要的效果,希望繼續(xù)合作下去。
——中國電子科技集團技術(shù)部主任 馬工
    曙海的FPGA 培訓很好地填補了高校FPGA培訓空白,不錯。總之,有利于學生的發(fā)展, 有利于教師的發(fā)展,有利于課程的發(fā)展,有利于社會的發(fā)展。
——上海電子,馮老師
    曙海給我們公司提供的Dsp6000培訓,符合我們項目的開發(fā)要求,解決了很多困惑我 們很久的問題,與曙海的合作非常愉快。
——公安部第三研究所,項目部負責人李先生
    MTK培訓-我在網(wǎng)上找了很久,就是找不到。在曙海居然有MTK驅(qū)動的培訓,老師經(jīng)驗 很豐富,知識面很廣。下一個還想培訓IPHONE蘋果手機。跟他們合作很愉快,老師很有人情味,態(tài)度很和藹。
——臺灣雙揚科技,研發(fā)處經(jīng)理,楊先生
    曙海對我們公司的iPhone培訓,實驗項目很多,確實學到了東西。受益無窮 啊!特別是對于那種正在開發(fā)項目的,確實是物超所值。
——臺灣歐澤科技,張工
    通過參加Symbian培訓,再做Symbian相關(guān)的項目感覺更加得心應手了,理 論加實踐的授課方式,很有針對性,非常的適合我們。學完之后,很輕松的就完成了我們的項目。
——IBM公司,沈經(jīng)理
    有曙海這樣的DSP開發(fā)培訓單位,是教育行業(yè)的財富,聽了他們的課,茅塞頓開。
——上海醫(yī)療器械高等學校,羅老師
  我們新培訓過的企業(yè)客戶以及培訓的主要內(nèi)容:
 

一汽海馬汽車 DSP培訓
蘇州金屬研究院 DSP培訓
南京南瑞集團技術(shù) FPGA培訓
西安愛生技術(shù)集團 FPGA培訓,DSP培訓
成都熊谷加世電氣 DSP培訓
福斯賽諾分析儀器(蘇州) FPGA培訓
南京國電工程 FPGA培訓
北京環(huán)境特性研究所 達芬奇培訓
中國科微系統(tǒng)與信息技術(shù)研究所 FPGA高級培訓
重慶網(wǎng)視只能流技術(shù)開發(fā) 達芬奇培訓
無錫力芯微電子股份 IC電磁兼容
河北科研究所 FPGA培訓
上海微小衛(wèi)星工程中心 DSP培訓
廣州航天航空 POWERPC培訓
桂林航天工 DSP培訓
江蘇五維電子科技 達芬奇培訓
無錫步進電機自動控制技術(shù) DSP培訓
江門市安利電源工程 DSP培訓
長江力偉股份 CADENCE 培訓
愛普生科技(無錫 ) 數(shù)字模擬電路
河南平高 電氣 DSP培訓
中國航天員科研訓練中心 A/D仿真
常州易控汽車電子 WINDOWS驅(qū)動培訓
南通大學 DSP培訓
上海集成電路研發(fā)中心 達芬奇培訓
北京瑞志合眾科技 WINDOWS驅(qū)動培訓
江蘇金智科技股份 FPGA高級培訓
中國重工第710研究所 FPGA高級培訓
蕪湖伯特利汽車安全系統(tǒng) DSP培訓
廈門中智能軟件技術(shù) Android培訓
上海科慢車輛部件系統(tǒng)EMC培訓
中國電子科技集團第五十研究所,軟件無線電培訓
蘇州浩克系統(tǒng)科技 FPGA培訓
上海申達自動防范系統(tǒng) FPGA培訓
四川長虹佳華信息 MTK培訓
公安部第三研究所--FPGA初中高技術(shù)開發(fā)培訓以及DSP達芬奇芯片視頻、圖像處理技術(shù)培訓
上海電子信息職業(yè)技術(shù)--FPGA高級開發(fā)技術(shù)培訓
上海點逸網(wǎng)絡科技有限公司--3G手機ANDROID應用和系統(tǒng)開發(fā)技術(shù)培訓
格科微電子有限公司--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
南昌航空大學--fpga 高級開發(fā)技術(shù)培訓
IBM 公司--3G手機ANDROID系統(tǒng)和應用技術(shù)開發(fā)培訓
上海貝爾--3G手機ANDROID系統(tǒng)和應用技術(shù)開發(fā)培訓
中國雙飛--Vxworks 應用和BSP開發(fā)技術(shù)培訓

 

上海水務建設工程有限公司--Alter/Xilinx FPGA應用開發(fā)技術(shù)培訓
恩法半導體科技--Allegro Candence PCB 仿真和信號完整性技術(shù)培訓
中國計量--3G手機ANDROID應用和系統(tǒng)開發(fā)技術(shù)培訓
冠捷科技--FPGA芯片設計技術(shù)培訓
芬尼克茲節(jié)能設備--FPGA高級技術(shù)開發(fā)培訓
川奇光電--3G手機ANDROID系統(tǒng)和應用技術(shù)開發(fā)培訓
東華大學--Dsp6000系統(tǒng)開發(fā)技術(shù)培訓
上海理工大學--FPGA高級開發(fā)技術(shù)培訓
同濟大學--Dsp6000圖像/視頻處理技術(shù)培訓
上海醫(yī)療器械高等專科學校--Dsp6000圖像/視頻處理技術(shù)培訓
中航工業(yè)無線電電子研究所--Vxworks 應用和BSP開發(fā)技術(shù)培訓
北京交通大學--Powerpc開發(fā)技術(shù)培訓
浙江理工大學--Dsp6000圖像/視頻處理技術(shù)培訓
臺灣雙陽科技股份有限公司--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
滾石移動--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
冠捷半導體--Linux系統(tǒng)開發(fā)技術(shù)培訓
奧波--CortexM3+uC/OS開發(fā)技術(shù)培訓
迅時通信--WinCE應用與驅(qū)動開發(fā)技術(shù)培訓
海鷹醫(yī)療電子系統(tǒng)--DSP6000圖像處理技術(shù)培訓
博耀科技--Linux系統(tǒng)開發(fā)技術(shù)培訓
華路時代信息技術(shù)--VxWorks BSP開發(fā)技術(shù)培訓
臺灣歐澤科技--iPhone開發(fā)技術(shù)培訓
寶康電子--Allegro Candence PCB 仿真和信號完整性技術(shù)培訓
上海天能電子有限公司--Allegro Candence PCB 仿真和信號完整性技術(shù)培訓
上海亨通光電科技有限公司--andriod應用和系統(tǒng)移植技術(shù)培訓
上海智搜文化傳播有限公司--Symbian開發(fā)培訓
先先信息科技有限公司--brew 手機開發(fā)技術(shù)培訓
鼎捷集團--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
傲然科技--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
中軟國際--Linux系統(tǒng)開發(fā)技術(shù)培訓
龍旗控股集團--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
研祥智能股份有限公司--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
羅氏診斷--Linux應用開發(fā)技術(shù)培訓
西東控制集團--DSP2000應用技術(shù)及DSP2000在光伏并網(wǎng)發(fā)電中的應用與開發(fā)
科大訊飛--MTK應用(MMI)和驅(qū)動開發(fā)技術(shù)培訓
東北農(nóng)業(yè)大學--IPHONE 蘋果應用開發(fā)技術(shù)培訓
中國電子科技集團--Dsp2000系統(tǒng)和應用開發(fā)技術(shù)培訓
中國船舶重工集團--Dsp2000系統(tǒng)開發(fā)技術(shù)培訓
晶方半導體--FPGA初中高技術(shù)培訓
肯特智能儀器有限公司--FPGA初中高技術(shù)培訓
哈爾濱大學--IPHONE 蘋果應用開發(fā)技術(shù)培訓
昆明電器科學研究所--Dsp2000系統(tǒng)開發(fā)技術(shù)
奇瑞汽車股份--單片機應用開發(fā)技術(shù)培訓


 
  曙海企業(yè)  
  備案號:滬ICP備08026168號 .(2014年7月11)...................
友情鏈接:Cadence培訓 ICEPAK培訓 EMC培訓 電磁兼容培訓 sas容培訓 羅克韋爾PLC培訓 歐姆龍PLC培訓 PLC培訓 三菱PLC培訓 西門子PLC培訓 dcs培訓 橫河dcs培訓 艾默生培訓 robot CAD培訓 eplan培訓 dcs培訓 電路板設計培訓 浙大dcs培訓 PCB設計培訓 adams培訓 fluent培訓系列課程 培訓機構(gòu)課程短期培訓系列課程培訓機構(gòu) 長期課程列表實踐課程高級課程學校培訓機構(gòu)周末班培訓 南京 NS3培訓 OpenGL培訓 FPGA培訓 PCIE培訓 MTK培訓 Cortex訓 Arduino培訓 單片機培訓 EMC培訓 信號完整性培訓 電源設計培訓 電機控制培訓 LabVIEW培訓 OPENCV培訓 集成電路培訓 UVM驗證培訓 VxWorks培訓 CST培訓 PLC培訓 Python培訓 ANSYS培訓 VB語言培訓 HFSS培訓 SAS培訓 Ansys培訓 短期培訓系列課程培訓機構(gòu) 長期課程列表實踐課程高級課程學校培訓機構(gòu)周末班 曙海 教育 企業(yè) 培訓課程 系列班 長期課程列表實踐課程高級課程學校培訓機構(gòu)周末班 短期培訓系列課程培訓機構(gòu) 曙海教育企業(yè)培訓課程 系列班
在線客服
主站蜘蛛池模板: 国产精品永久免费视频观看 | 免费一级大片 | 欧美日韩在线一本卡 | 欧美大黄特黄一级毛片 | 中日韩欧美中文字幕毛片 | 九九精品成人免费国产片 | 欧美在线成人免费国产 | 无遮挡一级毛片私人影院 | 青青草国产青春综合久久 | 国产 日韩 一区 | 在线毛片一区二区不卡视频 | 日韩国产有码在线观看视频 | 亚洲国产综合精品 | 婷婷色九月 | 日韩激情视频在线 | 亚洲4区| 亚洲黄色免费在线观看 | 中文字幕在线永久视频 | 天天怕夜夜怕狠狠怕 | 久久综合精品国产一区二区三区 | 色拍拍在线精品视频 | 国产精品巨乳 | 可以免费观看一级毛片黄a 可以免费观看欧美一级毛片 | 国产青青在线视频 | 国产成人综合视频 | 我看逼逼| 亚洲 欧美 日韩 在线 | 久久精品在现线观看免费15 | 成年人啪啪网站 | 国产成人av性色在线影院 | 老人与老人免费a级毛片 | 在线视频亚洲色图 | 一级特黄录像实干片 | 日韩免费小视频 | 六月丁香婷婷色狠狠久久 | 国产精品一区久久精品 | 一级黄色毛片免费看 | 国产不卡毛片 | 国产亚洲一区二区三区啪 | 中文字幕一区二区三区不卡 | 欧美日韩中文字幕在线 |