天天干天天操天天爱-天天干天天操天天操-天天干天天操天天插-天天干天天操天天干-天天干天天操天天摸

課程目錄: 大數據分析培訓 1

4401 人關注
(78637/99817)
課程大綱:

大數據分析培訓 1

 

 

 

Section 1: Simple linear regression

Fit a simple linear regression between two variables

in R;Interpret output from R;Use models to predict a response variable;Validate the assumptions of the model.

Section 2: Modelling data

Adapt the simple linear regression model in R to deal with multiple variables;Incorporate continuous and categorical variables

in their models;Select the best-fitting model by inspecting the R output.

Section 3: Many models

Manipulate nested dataframes in R;Use R to apply simultaneous linear models

to large data frames by stratifying the data;Interpret the output of learner models.

Section 4: Classification

Adapt linear models to take into account when the response

is a categorical variable;Implement Logistic regression (LR) in R;Implement

Generalised linear models (GLMs) in R;Implement Linear discriminant analysis (LDA) in R.

Section 5: Prediction using models

Implement the principles of building a model to do prediction using classification;Split data into training and test sets,

perform cross validation and model evaluation metrics;Use model selection for explaining data

with models;Analyse the overfitting and bias-variance trade-off in prediction problems.

Section 6: Getting bigger

Set up and apply sparklyr;Use logical verbs in R by applying native sparklyr versions of the verbs.

Section 7: Supervised machine learning with sparklyr

Apply sparklyr to machine learning regression and classification models;Use machine learning models for prediction;

Illustrate how distributed computing techniques can be used for “bigger” problems.

Section 8: Deep learning

Use massive amounts of data to train multi-layer networks for classification;

Understand some of the guiding principles behind training deep networks, including the use of autoencoders,

dropout, regularization, and early termination;Use sparklyr and H2O to train deep networks.

Section 9: Deep learning applications and scaling up

Understand some of the ways in which massive amounts of unlabelled data, and partially labelled data,

is used to train neural network models;Leverage existing trained networks for targeting

new applications;Implement architectures for object classification and object detection and assess their effectiveness.

Section 10: Bringing it all together

Consolidate your understanding of relationships between the methodologies presented in this course,

theirrelative strengths, weaknesses and range of applicability of these methods.


 

主站蜘蛛池模板: 东京不热视频在线观看 | 久久精品国产999久久久 | 欧美在线第一二三四区 | 欧美精品videossex性护士 | 国产萝控精品福利视频免费观看 | 成人综合影院 | 日本一视频一区视频二区 | 免费一级特黄 欧美大片 | 成年午夜一级毛片视频 | 日韩精品一区二区三区 在线观看 | 免费人成黄页在线观看忧物 | 中文字幕一区二区在线观看 | 一级毛片不卡免费看老司机 | 在线观看免费黄色片 | 在线免费影院 | 亚洲成年人网址 | 激情丝袜欧美专区在线观看 | 国产成人一区二区三区在线播放 | 国产成人精品免费视频动漫 | 成人午夜大片免费看爽爽爽 | 黄色大片久久 | 国产成人高清精品免费软件 | 日韩精品免费 | 美女一级黄色 | 亚洲美女自拍视频 | 一区二区三区免费视频网站 | 国产目拍亚洲精品一区二区三区 | 天天好比网 | 亚洲看片网站 | 亚洲成色999久久网站 | 国产精品永久免费自在线观看 | 黄色在线观看国产 | 日本在线日本中文字幕日本在线视频播放 | 啪啪激情综合 | 骚婷婷 | 亚州性视频 | 欧美一级淫片a免费播放口aaa | 青青草在线视频免费观看 | 嫩草精品 | 欧美性爽xxxⅹbbbb | 国产福利专区 |